User-centric network fairness through connection level control

Andrés Ferragut Fernando Paganini

Mathematics Applied to Telecommunications Research Group
Universidad ORT
Uruguay

Infocom 2010 Miniconference
Outline

1. Motivation
2. User-centric fairness
3. Models and analysis
4. Conclusions and Future Work
Since Kelly et. al. [KMT98], resource allocation in the Internet is modelled as an utility maximization problem (NUM).

However, in current congestion control protocols, the utility represents the protocol behavior.
Since Kelly et. al. [KMT98], resource allocation in the Internet is modelled as an utility maximization problem (NUM).

However, in current congestion control protocols, the utility represents the protocol behavior.

Fairness is imposed on a per connection-basis.

Notion of fairness determined by the protocol (TCP).
Users get in the way...

- Users may open multiple connections...
Users get in the way...

- Users may open multiple connections...
 - ...to push for a larger share of resources.
Users get in the way...

- Users may open multiple connections...
 - ...to push for a larger share of resources.
 - ...or along several routes.
Users get in the way...

- Users may open multiple connections...
 - ...to push for a larger share of resources.
 - ...or along several routes.

- The notion of “flow rate fairness” is artificial.
- We need a user-centric notion of fairness (and decentralized ways to achieve it!).
The network is composed of links (l) and users have one or several routes (r) over these links to open their connections.

- x_r: rate of a single connection.
- n_r: number of ongoing connections.
- $\varphi_r = n_r x_r$: aggregate rate.
Some notation...

The network is composed of links \((l)\) and users have one or several routes \((r)\) over these links to open their connections.

- \(x_r\): rate of a single connection.
- \(n_r\): number of ongoing connections.
- \(\varphi_r = n_r x_r\): aggregate rate.
- \(\varphi^i = \sum_{r \in i} \varphi_r\): aggregate rate of user \(i\).
- \(R_{lr}\): the routing matrix.
- \(y_l = \sum_r R_{lr} \varphi_r\): the rate in link \(l\).
Per-connection rates x_r satisfy [Sri04]:

Problem (TCP Congestion control)

For fixed $\{n_r\}$,

$$\max_{\{x_r\}} \sum_r n_r U_{TCP_r}(x_r),$$

subject to capacity constraints:

$$\sum_r R_{lr} n_r x_r \leq c_l$$

Here U_{TCP_r} reflects the congestion controller.
What we want to solve...

The user centric notion of fairness is:

Problem (User Welfare)

\[
\max \sum_i U_i(\varphi^i),
\]

subject to:

\[
\sum_r R_{lr} \varphi_r \leq c_l
\]

with \(\varphi^i = \sum_{r \in i} \varphi_r \),

- \(U_i \) is a concave utility function that reflects the user preferences (or an SLA).
- Its argument reflects the total rate the user gets.
Achieving user-centric fairness

- **Goal:** Achieve the USER WELFARE optimum.
- **Constraint:** Without changing the TCP.
- **Idea:** Control the number of connections in each route.
Achieving user-centric fairness

- **Goal**: Achieve the USER WELFARE optimum.
- **Constraint**: Without changing the TCP.
- **Idea**: Control the number of connections in each route.

Possible knobs:
- Direct control of the n_r (assumes user cooperation).
- Admission control of incoming connections.
- When multiple routes are available: choose the best route.
Achieving user-centric fairness

■ **Goal:** Achieve the USER WELFARE optimum.
■ **Constraint:** Without changing the TCP.
■ **Idea:** Control the number of connections in each route.

Possible knobs:

■ Direct control of the n_r (assumes user cooperation).
■ Admission control of incoming connections.
■ When multiple routes are available: choose the best route.
We would like to solve \(\max \sum_r U_i(\sum_{r \in i} \varphi_r) \).

If we can control \(\varphi_r \) we may use the primal dual dynamics:

\[
\begin{align*}
\dot{\varphi}_r &= k(U'_i(\varphi_r) - q_r) \\
\dot{p}_l &= \gamma(y_l - c_l)_{pl}^+ \\
y &= Rx, \quad q = R^T p.
\end{align*}
\]

Problem: In the multipath case, it may oscillate ([AUU58]) (the problem is not strictly concave).
Controlling the n_r I

- We would like to solve $\max \sum_r U_i(\sum_{r \in i} \varphi_r)$.
- If we can control φ_r we may use the primal dual dynamics:

$$\dot{\varphi}_r = k(U'_i(\varphi_r) - q_r - \nu \dot{q}_r)$$
$$\dot{p}_l = \gamma(y_l - c_l)^+$$
$$y = Rx, \ q = R^T p.$$

- **Problem:** In the multipath case, it may oscillate ([AUU58]) (the problem is not strictly concave).
- **Our solution:** Old control control trick, add a predictive term in the price.

Theorem

The preceding control law is globally asymptotically stable (details in the paper).
Controlling the n_r II

- We cannot control φ_r directly (partially controlled by TCP).
- **Idea:** Find a control law for n_r such that the $\varphi_r = n_r x_r$ follow the preceding equations.

Solution: choose n_r to satisfy

$$\dot{n}_r = n_r[k(U'_i(\varphi_r) - q_r - \nu \dot{q}_r) + \dot{x}_r/x_r]$$

Note the same price is used to control TCP and n_r.
Controlling the n_r III

Theorem

If n_r follows:

$$\dot{n}_r = n_r[k(U'_i(\varphi_r) - q_r - \nu \dot{q}_r) + \dot{x}_r/x_r]$$

the system is globally convergent to the equilibrium of the User Welfare Problem.
Controlling the n_r III

Theorem

If n_r follows:

$$\dot{n}_r = n_r[k(U'_i(\varphi_r) - q_r - \nu \dot{q}_r) + \dot{x}_r/x_r]$$

the system is globally convergent to the equilibrium of the User Welfare Problem.

Remark: The derivative terms are harder to estimate correctly.
Controlling the \(n_r \) III

Theorem

If \(n_r \) follows:

\[
\dot{n}_r = n_r[k(U'_i(\varphi_r) - q_r - \nu \dot{q}_r) + \dot{x}_r/x_r]
\]

the system is globally convergent to the equilibrium of the User Welfare Problem.

- **Remark:** The derivative terms are harder to estimate correctly.
- The simpler dynamics:

\[
\dot{n}_r = kn_r(U'_i(\varphi_r) - q_r)
\]

seems to perform fine on simulations.

- We implemented this cooperative control in the ns-2 simulator.
Scenario 1: Controlling the number of connections.

User 1

C1 = 4 Mbps

User 2

C2 = 10 Mbps

C3 = 6 Mbps

Topology simulated in Scenario 1.

Optimal allocation:

\[\varphi^1 = \varphi^2 = 10 \text{Mbps} \]

Results for Scenario 1
Utility based admission control:

- **Problem:** Users may choose not to control their connections.
- Can we do admission control to impose fairness?

Utility Based Admission Control

Apply the following rule:

\[
\text{If } U'_i(\varphi^i) > q_r \rightarrow \text{admit connection.}
\]

\[
\text{If } U'_i(\varphi^i) \leq q_r \rightarrow \text{discard connection.}
\]

- Compare the *user* demand curve with current route price.
- Admit connection when price is sufficiently low (route not congested).

Which notion of fairness is imposed by this rule?
Scenario 2: Fairness via admission control.

User Welfare max-min allocation:

\[\varphi^1 = 5\text{Mbps} \]

\[\varphi^2 = \varphi^3 = 3\text{Mbps}. \]
Scenario 2: Fairness via admission control.

User Welfare max-min allocation:

$$\varphi_1 = 5\text{Mbps}$$

$$\varphi_2 = \varphi_3 = 3\text{Mbps}.$$
Scenario 2: Fairness via admission control.

User Welfare max-min allocation:

$\varphi^1 = 5 \text{Mbps}$

$\varphi^2 = \varphi^3 = 3 \text{Mbps}$.

Admission control is imposing the User Welfare notion of fairness.

What happens when not all users are congesting the network?
Scenario 2: Fairness via admission control.

Assume now that User 2 only demands 1Mbps on average.

A reasonable allocation would be:

\[
\begin{align*}
\varphi^1 &= 4\text{Mbps} \\
\varphi^2 &= 1\text{Mbps} \\
\varphi^3 &= 4\text{Mbps}.
\end{align*}
\]
Scenario 2: Fairness via admission control.

C1=8Mbps C2=6Mbps

User 3

User 1

User 2

Assume now that User 2 only demands 1Mbps on average.

A reasonable allocation would be:

\[\varphi^1 = 4\text{Mbps} \]
\[\varphi^2 = 1\text{Mbps} \]
\[\varphi^3 = 4\text{Mbps}. \]

Note that User 2 is protected by admission control.
Modelling admission control

- Assume users start connections as a Poisson Process of intensity λ_r on route r.
- Each connection brings an exponentially distributed job, with mean $1/\mu_r$.
Assume users start connections as a Poisson Process of intensity λ_r on route r.

Each connection brings an exponentially distributed job, with mean $1/\mu_r$.

This is similar to [dVLK99, BM01] connection level models.

The network is stable iff $\sum_{r \in l} \lambda_r / \mu_r < c_l$ (all users are satisfied).
Assume users start connections as a Poisson Process of intensity λ_r on route r.

Each connection brings an exponentially distributed job, with mean $1/\mu_r$.

This is similar to [dVLK99, BM01] connection level models.

The network is stable iff $\sum_{r \in \mathcal{L}} \lambda_r / \mu_r < c_l$ (all users are satisfied).

If the network is not stable, through a fluid limit analysis we show that admission control solves:

Problem (Saturated USER WELFARE)

$$\max \sum_i U_i(\varphi^i)$$

subject to $R\varphi \leq c$, and $\varphi_r \leq \lambda_r / \mu_r$ for each r.
Same as Scenario 1, but now with UBAC instead of cooperating users. The network is overloaded.

Optimal allocation:
\[\varphi^1 = \varphi^2 = 10\text{Mbps}. \]
Back to Scenario 1: Adm. control in multiple routes

Same as Scenario 1, but now with UBAC instead of cooperating users. The network is overloaded.

Optimal allocation:
\[\varphi^1 = \varphi^2 = 10\text{Mbps}. \]

We can impose the same notion of fairness through UBAC.
Combining admission control and routing

- If we can choose the route of a connection, we can combine admission control with routing.
- In the paper, we partially characterize the stability region of the multipath connection level model, with single-path connections (generalizes [dVLK99, BM01], similar to [HSH+06]).
- We generalize the admission control rule:

\[
\text{UBAC with routing}
\]

\[
\text{Admit new connection if } \min_{r \in i} q_r < U'_i(\varphi^i)
\]

If admitted: route through cheapest path.

- We have partial results showing that it imposes a Multipath User Welfare allocation.
Conclusions and future work

We studied the issues of stability and fairness created by the ability to open multiple TCP connections.

- **Contributions:**
 - Control laws for the number of connections to achieve User-Centric Fairness.
 - Utility-based Admission Control for stability and user fairness.
 - Price-based routing of connections and combination with admission control.

- **Open questions:**
 - Stability under routing: we have partial results.
 - Global stability for admission control.
 - Deployable control mechanisms for the real Internet. In particular, enabling edge routers to enforce utility-based SLAs.
Thank you!
Questions?
Questions?

Contact: ferragut@ort.edu.uy
References

Frank Kelly, Aman Maulloo, and David Tan.
Rate control in communication networks: shadow prices,
proportional fairness and stability.

Rayadurgam Srikant.
The Mathematics of Internet Congestion Control.