
Gentle Formalisation of Stoughton’s
Lambda Calculus Substitution

Álvaro Tasistro
Universidad ORT Uruguay
tasistro@ort.edu.uy

Ernesto Copello
Universidad ORT Uruguay
copello@ort.edu.uy

Nora Szasz
Universidad ORT Uruguay

szasz@ort.edu.uy

ABSTRACT

In [5], Allen Stoughton proposed a notion of substitution for
the Lambda calculus formulated in its original syntax with
only one sort of symbols (names) for variables –without iden-
tifying α-convertible terms. According to such formulation,
the action of substitution on terms is defined by simple struc-
tural recursion and an interesting theory arises concerning
e.g. α conversion. In this paper we present a formalisation
of Stoughton’s development in Constructive Type Theory
using the language Agda, up to the Substitution Lemma for
α conversion. The code obtained is quite concise and we
are able to formulate some improvements over the original
presentation. For instance, our definition of α conversion is
just syntax directed but we are nevertheless able to prove
in an easy way that it gives rise to an equivalence relation,
whereas in [5] the latter was included as part of the defi-
nition. As a result of this work we are inclined to assert
that Stoughton’s is the right way to formulate the Lambda
calculus in its original, conventional syntax and that it is a
formulation amenable to fully formal treatment.

1. INTRODUCTION

The Lambda calculus was introduced in [1] without a defi-
nition of substitution. The complexity of this operation was
actually a prime motivation for [2], which provided the first
formal definition, somewhat as follows:

x[y := P] =

{
P if x = y
x if x 6= y

(MN)[y := P] = M [y := P] N [y := P]

(λx.M)[y := P] =

λx.M if y not free in λx.M
λx.M [y := P] if y free in λx.M

and x not free in P
λz.(M [x := z])[y := P] if y free

in λx.M and x free in P,
where z is the first variable
not free in MP.

The complexity lies in the last case: The recursion is on the
length of the term wherein the substitution is performed.
But, to ascertain that M [x := z] is of a length lesser than
that of λx.M , a proof has to be composed, which must
be therefore simultaneous to the justification of the well-
foundedness of the definition. Also consequently, proofs of
properties of the substitution operation have generally to be
conducted on the length of terms. This prompts the search
for a simpler definition, especially if one is interested in ac-
tually carrying out the formal meta-theory of the lambda
calculus to a substantial extent, e.g. employing some of the
proof assistants at hand.

As is well known, several of the proposed solutions take
the path of modifying the actual syntax of the language.
Such path is indeed well motivated, especially if the choice
is to employ a type of symbols different from that of the
variables for the local or bound names: That was actually
Frege’s choice in the first fully fledged formal language with
a binder [3]. But it is also interesting to investigate how
well it is possible to do with the original, ordinary syntax of
the Lambda calculus. In this respect, it can be argued that
it was Stoughton [5] who provided the right formulation of
substitution.

The prime observation is simple: In the difficult case where
renaming of the bound variable is necessary, structural re-
cursion is recovered if one lets substitutions to grow multi-
ple (simultaneous) instead of just unary. Moreover, further
simplification is achieved if one does not bother in distin-
guishing so many cases when considering the substitution in
an abstraction and just performs uniformly the renaming of
the bound variable. The resulting theory has many pleas-
ant properties, besides radically simplifying the method of
reasoning. Possibly the most interesting result is that the
identity substitution normalizes terms with respect to α-

conversion, which is due precisely to the method of uniform
renaming.

The purpose of the present paper is to explore the formal-
isation in Constructive Type Theory of Stoughton’s formu-
lation and subsequent theory of substitution in the Lambda
calculus. We shall carry it out up to the proof of the so-
called Substitution Lemma for α conversion, i.e. the result
establishing that the substitution operation is compatible
with α conversion. Such formalisation has been undertaken
in [4] but we believe we are making some substantial refor-
mulation thereof. In particular, that work represents the
multiple substitutions as (total) functions from variables to
terms (the same as in [5]) and defines the propositional iden-
tity of substitutions as their extensional equivalence. We are
rather unsatisfied with this stand, for we prefer the propo-
sitional identity to reflect the definitional, and thus decid-
able, equality. We shall also represent the multiple substitu-
tions as functions, but will avoid using such fully extensional
equivalence. We also introduce simplifications with respect
to both Stoughton’s original formulation and the just men-
tioned formalisation. Foremost among these is the definition
of α conversion: Stoughton’s version is as the least congru-
ence generated by a simple renaming of bound variable. On
the other hand, the formalisation [4] gives a structural defini-
tion and then takes considerable effort to prove it an equiv-
alence relation. Our definition is a quite simple inductive
one, directly following the structure of terms, and the proof
that it is an equivalence relation is very short, although it
requires induction on the length of the terms at one point.

From a general point of view, one can assume a relaxed, di-
dactic style of presentation which explores the various con-
cepts and choices involved in a bottom-up fashion or, al-
ternatively, one can direct oneself as efficiently as possible
towards an established objective. In this paper we take the
second approach, mainly due to our interest in finding out
how inexpensive a formal proof of the Substitution Lemma
for α conversion can be if we stick to the classical syntax of
Lambda calculus. The interest in the mentioned Substitu-
tion Lemma is due to the fact that it is an important piece
in the subsequent development of the meta-theory of the
Lambda calculus, particularly in the various lemmas con-
ducting to the Church-Rosser theorem.

The rest of the paper consists just in the next section, where
the formal development is presented with as much detail as
we consider appropriate, and a final section on concluding
comments.

2. FORMALISATION

We use the language Agda[?]. The present is actually a lit-
erate Agda document, where we hide some code for reasons
of conciseness1.

2.1 Syntax

1The entire code is available at:
http://docentes.ort.edu.uy/perfil.jsp?docenteId=2264

V is an inductive type with infinitely many objects.

data Λ : Set where
var : V→ Λ
app : Λ→ Λ→ Λ
abs : V→ Λ→ Λ

The following is called the freshness relation. It holds when
a variable does not occur free in a term.

data # : V→ Λ→ Set where
var : {x y : V} → y 6≡ x→

x # var y
app : {x : V} {M N : Λ} → x # M→ x # N→

x # (app M N)
abse : {x y : V} {M : Λ} → x ≡ y→

x # (abs y M)
abs : {x y : V} {M : Λ} → x # M→

x # (abs y M)

The notion of free variable is as usual. We could do with
only one of the two notions of freedom and freshness. Due to
our already commented interest in proceeding as straightfor-
wardly as possible, we avoid the corresponding discussion.

data free : V→ Λ→ Set where
var : {x y : V} → y ≡ x→

x free var y
appl : {x : V} {M N : Λ} → x free M→

x free (app M N)
appr : {x : V} {M N : Λ} → x free N→

x free (app M N)
abs : {x y : V} {M : Λ} → x free M→ y 6≡ x→

x free (abs y M)

2.2 Substitutions

Substitutions are functions from variables to terms.

Σ = V→ Λ

We actually work with finite, identity almost everywhere
functions. So they will be generated by an update operation
<+ up from the identity function ι.

ι : Σ
ι = id ◦ var

<+ : Σ→ V × Λ→ Σ
(σ <+ (x,M)) y with x

?
= y

... | yes = M

... | no = σ y

Moreover, most of the relevant properties of substitutions
concern their restrictions to (the free variables of) given
terms. We write P the type of restrictions and σ �M the re-
striction of substitution σ to a term M . We refer sometimes
as the codomain of a restriction σ �M to the (list of) terms
N such that σx = N for x free M . Restrictions, however,
are not functions, but just finite fragments thereof that it
is convenient to consider for most of the definitions to be

given. For instance, freshness in a restriction is defined as
follows:

� : V→ Σ→ Λ→ Set
x # σ � M = (y : V)→ y free M→ x # (σ y)

The right notion of identity of substitutions has to be for-
mulated for restrictions:

≡ � : Σ→ Σ→ Λ→ Set
σ ≡ σ’ � M = (x : V)→ x free M→ σ x ≡ σ’ x

The choice function: We postulate a choice function χ that
returns a variable fresh in the codomain of a given restric-
tion. It is actually a function of the codomain in question,
i.e. it depends in fact only on a finite set of variables, re-
turning a variable not in such set. Formally, it must satisfy
the following:

1. χ : P→ V.

2. χ(σ �M) # σ �M .

3. χ(σ �M) = χ(σ′ �M ′)⇔
[x free M ⇔ x free M ′

∧
(∀x free M)(y free (σx)⇔ y free (σ′x))].

The Agda code corresponding to these axioms is straight-
forward but we choose not to show it here for reasons of
layout.

χ is indeed implementable as the variables form an enumer-
ation.

The substitution action: The action of substitutions on terms
is defined by structural recursion. The χ function is used to
perform uniform capture-avoiding renaming.

• : Λ→ Σ→ Λ
(var x) • σ = σ x
(app M N) • σ = app (M • σ) (N • σ)
(abs x M) • σ = abs y (M • (σ <+ (x, var y)))

where y = χ (σ, abs x M)

It follows that:

lemma-subst-σ≡ : {M : Λ} {σ σ’ : Σ} →
σ ≡ σ’ � M→ (M • σ) ≡ (M • σ’)

i.e. equal substitutions acting on a term yield the same
result.

2.3 Alpha conversion

The inductive definition is simple and follows the structure
of terms:

data ∼α : Λ→ Λ→ Set where
var : {x : V} →

(var x) ∼α (var x)

app : {M M’ N N’ : Λ} → M ∼α M’→ N ∼α N’→
(app M N) ∼α (app M’ N’)

abs : {M M’ : Λ} {x x’ y : V} → y # (abs x M)→
y # (abs x’ M’)→
(M • (ι <+ (x, var y))) ∼α (M’ • (ι <+ (x’, var y)))→
(abs x M) ∼α (abs x’ M’)

We show the last rule in a more friendly notation. Notice
its symmetry:

M(ι<+(x, z)) ∼α M
′(ι<+(x′, z))

z#λxM, λx′M ′

λxM ∼α λx
′M ′

The α equivalence of substitutions is also defined on restric-
tions:

∼α � : Σ→ Σ→ Λ→ Set
σ ∼α σ’ � M = (x : V)→ x free M→ σ x ∼α σ’ x

2.4 Lemmas

The following are the main results of the development. We
give all the statements in mathematical notation and in
Agda. We give comments about the proofs and show some
of them explicitely.

Lemma 1. M ∼α M
′ ⇒ χ(σ �M) = χ(σ �M ′).

lemma-χ : {M M’ : Λ} {σ : Σ} → M ∼α M’→
χ (σ,M) ≡ χ (σ,M’)

Lemma 2. M ∼α M
′ ⇒ (x free M ⇔ x free M ′).

lemmaM∼M’→free→ : {M M’ : Λ} → M ∼α M’→
(z : V)→ z free M→ z free M’

lemmaM∼M’→free← : {M M’ : Λ} → M ∼α M’→
(z : V)→ z free M’→ z free M

The proof is by induction on the relation ∼α , and requires
three freshness lemmas besides the preceding one.

Lemma 3. M ∼α M
′ ⇒Mσ = M ′σ.

lemmaM∼M’→Mσ≡M’σ : {M M’ : Λ} {σ : Σ}
→ M ∼α M’→ M • σ ≡ M’ • σ

The proof is again by induction on the relation ∼α . It
requires the χ lemma as well as the following:

lemma<+ : {x y z : V} {M : Λ} {σ : Σ} →
z # (abs x M)→
M • (σ <+ (x, var y)) ≡
(M • (ι <+ (x, var z))) • (σ <+ (z, var y))

Lemma 4. Mι = M ′ι⇒M ∼α M
′.

lemmaMι≡M’ι→M∼M’ : {M M’ : Λ} →
M • ι ≡ M’ • ι→ M ∼α M’

This is the only proof done by induction on length of the
term. We use the Agda standard library Induction.Nat which
provides a well founded recursion operator. The proof is 30
lines long and uses mainly lemmas about the order relation
on natural numbers.

Corollary 1. M ∼α M
′ ⇔Mι = M ′ι.

The previous result is not necessary in our formalisation but
it is a nice result, which is immediate from the former lem-
mas. In particular, the direction from left to right amounts
to a normalizing property of ι with respect to ∼α.

Lemma 5. ∼α is a congruence.

It is enough to show that ∼α is an equivalence relation. We
include the code, which is very short and simple enough to
be read directly:

ρ : Reflexive ∼α
ρ {M} = lemmaMι≡M’ι→M∼M’ refl

σ : Symmetric ∼α
σ {M} {N} M∼N

= lemmaMι≡M’ι→M∼M’
(sym (lemmaM∼M’→Mσ≡M’σ M∼N))

τ : Transitive ∼α
τ {M} {N} {P} M∼N N∼P

= lemmaMι≡M’ι→M∼M’
(trans (lemmaM∼M’→Mσ≡M’σ M∼N)

(lemmaM∼M’→Mσ≡M’σ N∼P))

The proof uses just the corresponding properties of equality.

Lemma 6 (Substitution Lemma for ∼α). M ∼α M
′,

σ ∼α σ
′ �M ⇒Mσ ∼α M

′σ′.

The full code is:

lemma-subst : {M M’ : Λ} {σ σ’ : Σ} →
M ∼α M’→ σ ∼α σ’ � M→ (M • σ) ∼α (M’ • σ’)

lemma-subst {M} {M’} {σ} {σ’} M∼M’ σ∼σ’�M
= begin

M • σ
∼〈 lemma-subst-σ∼ σ∼σ’�M 〉
M • σ’
≈〈 lemmaM∼M’→Mσ≡M’σ M∼M’ 〉
M’ • σ’

Where:

lemma-subst-σ∼ : {M : Λ} {σ σ’ : Σ} →
σ ∼α σ’ � M→ (M • σ) ∼α (M • σ’)

lemma-subst-σ∼ {M} {σ} {σ’} σ∼ασ’�M
= lemmaMι≡M’ι→M∼M’ (begin≡

(M • σ) • ι
≡〈 lemma· {M} {σ} { ι} 〉
M • (ι · σ)
≡〈 lemma-subst-σ≡ {M}

{ ι · σ} { ι · σ’}
(lemma-σ� σ∼ασ’�M) 〉

M • (ι · σ’)
≡〈 sym (lemma· {M} {σ’} { ι}) 〉
(M • σ’) • ι
)

3. CONCLUSIONS

The potential contributions of this paper will necessarily
have to do with the ease of formalisation of results that are
basic and well-known but usually difficult to treat in a fully
formal manner. Therefore an assessment must proceed by
way of comparison. To begin with, we believe that we have
improved on the formalisation [4] already mentioned in the
introduction in at least two respects:

1. The use of better founded relations of equivalence be-
tween substitutions.

2. The simplicity of the proofs yielding that α conversion
is an equivalence relation.

The first item has to do with our preference for finitely given
equivalences, determined by restrictions of the substitutions
to given terms, instead of the infinite, undecidable exten-
sional identity. The second item, in turn, can be attested by
just noting the remarks in [4] concerning the (unexpected)
complexity of the proofs of symmetry and, especially, tran-
sitivity of the α conversion. The issue points in fact also to
an improvement of our work over Stoughton’s original pre-
sentation, as it is based on a much simpler definition of α
conversion: Stoughton’s comprises in fact six rules, whereas
ours requires three, in correspondence with the structure of
terms. This obviously simplifies reasoning by induction on
this relation. As already said, Stoughton’s remaining rules,
which are precisely the ones to the effect that α conversion
is an equivalence relation, are obtained from ours via (quite)
painless proofs. Central for the simplicity of those proofs is
the lemma 3 to the effect that two terms that converge un-
der the effect of the identity substitution are α convertible.
This was given in [5] but not used in the way we have done
here. We have proven it by well-founded induction on the
length of terms because that appeared to be the simplest
way available. This method of proof could be straightfor-
wardly encoded in Agda using library functions. It would
be interesting to investigate whether Agda’s facility of sized
types could be used to allow a simple structural recursion
instead of the general well-founded one.

As we said earlier, our interest in this work lies primarily in
investigating the brevity of the development up to the sub-
stitution lemma for α conversion when sticking to the con-

ventional syntax of the Lambda calculus. In this respect, the
main work to compare is [7] which is indeed quite success-
ful in using modified rules of α conversion and β reduction
to formally prove the Church-Rosser theorem. We ought to
proceed to a similar development but, in first appreciation,
we prefer Stoughton’s less contrived formulations. We are in
fact ready to sustain that substitution ought to be consid-
ered in Stoughton’s multiple form instead of the conventional
unary one that brings about so many inconveniences.

Another approach worth investigating in the context of the
ordinary syntax of the Lambda calculus is an adaptation of
the so-called Nominal Abstract Syntax [6]. The important
point in this respect is that the renaming of bound variable
that is necessary for defining substitution and lies at the
origin of α conversion can naturally be conceived as an op-
eration of a nature different from that of full substitution.
In particular, the Nominal Abstract Syntax approach would
implement it by means of an operation of swapping, i.e. of
interchange of names which is bijective and thus mathemati-
cally much better behaved than simple substitution. We are
currently working in formalisations along this “name swap-
ping” line.

In fact, the present work takes place within a project aiming
at carrying out extensive comparisons of formalisation tech-
niques using the meta-theory of Lambda calculus as test-
bed. So we aim at eventually obtain conclusions regarding
also the use of Frege-like, locally nameless and higher-order
syntax. Besides the detailed comparisons that will become
possible we aim with this work at improving our skills in
formalisation and programming, particularly in dependently
typed languages.

4. REFERENCES
[1] A. Church. A set of postulates for the foundation of

logic part i. Annals of Mathematics, 33(2):346–366,
1932. http://www.jstor.org/stable/1968702Electronic
Edition.

[2] H. B. Curry and R. Feys. Combinatory Logic, Volume
I. North-Holland, 1958. Second printing 1968.

[3] G. Frege. Begriffsschrift, eine der Arithmetischen
Nachgebildete Formelsprache des Reinen Denkens.
Halle, 1879. English translation in From Frege to
Gödel, a Source Book in Mathematical Logic (J. van
Heijenoort, Editor), Harvard University Press,
Cambridge, 1967, pp. 1–82.

[4] G. Lee. Proof pearl: Substitution revisited, again.
Hankyong National University, Korea,
http://formal.hknu.ac.kr/Publi/Stoughton.pdf.

[5] A. Stoughton. Substitution revisited. Theor. Comput.
Sci., 59:317–325, 1988.

[6] C. Urban, A. M. Pitts, and M. Gabbay. Nominal
unification. Theoretical Computer Science,
323(1-3):473–497, 2004.

[7] R. Vestergaard and J. Brotherston. A formalised
first-order confluence proof for the λ-calculus using
one-sorted variable names. Inf. Comput.,
183(2):212–244, 2003.

