Order of Grover's search algorithm with both total and local depolarizing channel errors

Ilan Cohn[†], André L. Fonseca de Oliveira[†], Efrain Buksman[†] and Jesús García-López de Lacalle [‡]

> † Facultad de Ingeniería, Universidad ORT Uruguay ‡ETSI de Sistemas Informáticos, Universidad Politécnica de Madrid icohn@uni.ort.edu.uy

Abstract

Noise is an inherent part of quantum computation. Although there exists a fault-tolerant approach to quantum computing [1], this requires many computational resources. Hence, it is important to analyze how noise affects well-known algorithms. In this paper the effect of noise in Grover's search algorithm [2] is studied. The noise is modeled as both total depolarizing channel (TDCh), and local depolarizing channel (LDCh) in every qubit [3]. An analysis of the order has been made analytically for the TDCh, and bounds have been found for the LDCh.

• We have obtained an approximation in terms of the TDCh model $(\hat{p}(k, \gamma_a(\alpha)) \approx \hat{p}^L(k, \alpha))$:

 $\gamma_a(\alpha) = 1 - \left(1 - \frac{\alpha}{2}\right)^n.$

1. Grover's Search Algorithm

Grover's quantum search algorithm is a quantum search algorithm known to be optimal [4] in finding the *target state* $|t\rangle$ among an unsorted database of $N = 2^n$ elements. The number of *steps* (or query calls) is $k_{Gr} = \left| \frac{\pi \sqrt{N}}{4} \right|$.

Grover's search algorithm

1. Set up the superposition state
$$\rho_0 = |s\rangle\langle s|$$
, where $|s\rangle = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} |i\rangle$.

2. Apply the oracle operator
$$O = 2 |t\rangle \langle t| - 2$$

3. Apply the diffusion operator
$$D = 2 |s\rangle \langle s| - I$$

4. Repeat steps 2 and 3
$$\left|\frac{\pi}{4}\sqrt{N}\right| - 1$$
 times.

5. Perform measurements in the canonical basis in each qubit. The target state will emerge with high probability as $N \gg 1$.

The density matrix obtained after k steps is

Figure 2: *Probability vs. Number of steps with* n = 10 *qubits* and different values of γ , $\gamma = 0$ (yellow), $\gamma = \frac{1}{4\sqrt{N}}$ (green), $\gamma = \frac{1}{\sqrt{N}}$ (red), $\gamma = \frac{4}{\sqrt{N}}$ (black) and $\gamma = 1$ (blue).

• With
$$k_{max}$$
 and $\hat{p}(k, \gamma)$ the estimated order $\left(\frac{k_{max}}{\hat{p}(k_{max}, \gamma)}\right)$ be comes
 $\frac{\pi\sqrt{N}}{4}\left(1 + \frac{\pi\sqrt{N}}{4}\gamma\left(1 - \frac{2}{\pi^2}\right)\right)$
for $\gamma \ll 1$, and
 $\frac{N}{9-8\gamma}$
for large values of γ .

• We also propose both lower and upper bounds to $\hat{p}^{L}(k, \alpha)$ in terms of two different γ approximations of the TDCh model:

$$\gamma_l(\alpha) = 1 - (1 - \alpha)^n \quad \text{and} \quad \gamma_u(\alpha) = \frac{n\alpha}{2 + n\alpha},$$

so that the following relationship holds

 $\hat{p}(k,\gamma_l) \leq \hat{p}^L(k,\alpha) \leq \hat{p}(k,\gamma_u), \quad \forall k \in \mathbb{N}.$

• Analogously to the TDCh case, the estimated order (stopping at k_{max}) for $\alpha \ll 1$ is

$$\frac{\pi\sqrt{N}}{4} + f\alpha N \log_2 N$$

where *f* is a constant in the interval $\left[\frac{\pi^2-4}{32}, \frac{2\pi^2-2}{32}\right]$

We analyze how the error modeled as the Total Depolarizing Channel (TDCh) affects Grover's search algorithm. • In every step of the algorithm we apply the Grover operator G = DO and the TDCh error

Figure 5: Bounds and estimated order vs. α for n = 8qubits. $\frac{k_{max}^{\mu}}{\hat{p}^{L}(k_{max},\alpha)}$ (blue), approximation with $\gamma_{a}(\alpha)$ (black) and lower and upper bounds with $\gamma_l(\alpha)$ and $\gamma_u(\alpha)$ (green and red).

4. Conclusions

- Total Depolarizing Channel (TDCh)
- \circ For constant and small values of $\gamma > 0$, the order of the algorithm is O(N), and to mantain the quadratic speedup ($O(\sqrt{N})$) one needs $\gamma \propto \frac{1}{\sqrt{N}}$.
- Local Depolarizing Channel (LDCh)
- \circ For constant and small values of $\alpha > 0$, the order of the algorithm is $O(N \log_2 N)$, and to mantain the quadratic speedup one needs $\alpha \propto \frac{1}{\sqrt{N}\log_2 N}$.

 $\varepsilon(\rho, \gamma) = (1 - \gamma)\rho + \gamma \frac{I}{N}.$

• The probability of finding the marked state is

 $\hat{p}(k,\gamma) = (1-\gamma)^k p(k) + \frac{1-(1-\gamma)^k}{N}.$

• The maximum probability is found at k_{max} , i.e.

Figure 4: Local Depolarizing Channel (LDCh) error model.

q_n

Here we analyze the effect of the Local Depolarizing Channel (LDCh) in Grover's search algorithm.

• In every step of the algorithm we apply the Grover operator G and the LDCh error

 $\varepsilon(\rho) = \varepsilon_1(\rho, \alpha) \circ \varepsilon_2(\rho, \alpha) \circ \cdots \circ \varepsilon_n(\rho, \alpha).$

• The probability of obtaining the marked state after the first step has been determined

$\hat{p}^L(1,\alpha) = \frac{1}{2^{3n-4}}$	$\left[2^{n}(2^{n-1}-1)\left(1-\frac{1}{2}\right)\right]$	$-\frac{\alpha}{2}\right)^n + \frac{1}{16}\left(2^n\right)$	$(n-4)^2$.
--	---	---	-------------

• Interestingly, local errors affect the algorithm even more than total errors.

References

[1] Daniel Gottesman. Phys. Rev. A, 57:127, 1998.

- [2] L.K. Grover. A fast quantum mechanical algorithm for database search. Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, 212, 1996.
- [3] M. A. Nielsen and I. L. Chuang. *Quantum computation and quantum information*, Cambridge Univ. Press, 2000.

[4] Christof Zalka. Grover's quantum searching algorithm is optimal. *Phys. Rev. A*, **60**:2746–2751, Oct 1999.

[5] P. Vrana, D. Reeb, D. Reitzner, and M. M. Wolf. New Journal of *Physics*, **16**:073033, 2014.